p130cas but not paxillin is essential for Caco-2 intestinal epithelial cell spreading and migration on collagen IV.
نویسندگان
چکیده
We have previously observed that collagen IV regulates Caco-2 intestinal epithelial cell spreading and migration via Src kinase and stimulates Src-dependent tyrosine phosphorylation of p130cas. We observed that collagen IV also stimulated Src-dependent phosphorylation of both paxillin Tyr31 and paxillin Tyr118. Caco-2 transfection with paxillin or p130cas siRNAs inhibited expression of these proteins by more than 90% for at least 5 days after transfection. Although p130cas siRNA inhibited cell spreading on collagen IV by 33%, three different paxillin siRNAs did not inhibit cell spreading. p130cas siRNA did not affect Src Tyr416 or Src Tyr527 phosphorylation, FAK Tyr397 phosphorylation, or Src-dependent phosphorylation of FAK Tyr925, suggesting that p130cas did not inhibit cell spreading by altering FAK or Src activity. Rat p130cas expression after siRNA knock-out of endogenous human p130cas in Caco-2 cells reduced cell spreading inhibition by 71%. In contrast, expression of rat p130cas from which the Src-phosphorylated substrate domain was deleted did not rescue siRNA inhibition of cell spreading. Combined treatment with siRNAs to Crk and CrkL, which bind to the p130cas substrate domain, inhibited cell spreading by 54%. Both p130cas siRNA and the combined Crk/CrkL siRNAs strongly inhibited (52 and 46% inhibition, respectively) Caco-2 sheet migration on collagen IV and noticeably inhibited lamellipodial extension, whereas paxillin siRNA only inhibited migration by 18% and did not noticeably affect lamellipodial extension. These results suggest that Src may regulate Caco-2 migration on collagen IV via both p130cas and paxillin but that Src phosphorylation of p130cas is more important for this process.
منابع مشابه
Collagen IV regulates Caco-2 migration and ERK activation via alpha1beta1- and alpha2beta1-integrin-dependent Src kinase activation.
Our previous work indicates intestinal epithelial cell ERK activation by collagen IV, a major component of the intestinal epithelial basement membrane, requires focal adhesion kinase (FAK) and suggests FAK and ERK may have important roles in regulating intestinal epithelial cell migration. We therefore sought to identify FAK downstream targets regulating intestinal epithelial cell spreading, mi...
متن کاملEpithelial cell spreading induced by hepatocyte growth factor influences paxillin protein synthesis and posttranslational modification.
Superficial wounds in the gastrointestinal tract rapidly reseal by coordinated epithelial cell migration facilitated by cytokines such as hepatocyte growth factor (HGF)/scatter factor released in the wound vicinity. However, the mechanisms by which HGF promotes physiological and pathophysiologic epithelial migration are incompletely understood. Using in vitro models of polarized T84 and Caco-2 ...
متن کاملPTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway
Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present ...
متن کاملActivation of PKCβII by PMA Facilitates Enhanced Epithelial Wound Repair through Increased Cell Spreading and Migration
Rapid repair of epithelial wounds is essential for intestinal homeostasis, and involves cell proliferation and migration, which in turn are mediated by multiple cellular signaling events including PKC activation. PKC isoforms have been implicated in regulating cell proliferation and migration, however, the role of PKCs in intestinal epithelial cell (IEC) wound healing is still not completely un...
متن کاملTyrosine phosphorylation of the CrkII adaptor protein modulates cell migration.
CrkII belongs to a family of adaptor proteins that become tyrosine phosphorylated after various stimuli. We examined the role of CrkII tyrosine phosphorylation in fibronectin-induced cell migration. Overexpression of CrkII inhibited dephosphorylation of focal adhesion components such as p130 Crk-associated substrate (p130cas) and paxillin by protein tyrosine phosphatase 1B (PTP1B). Tyrosine-pho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 25 شماره
صفحات -
تاریخ انتشار 2005